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Minimax games, spin glasses, and the polynomial-time hierarchy of complexity classes
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Institute of Mathematics and Informatics, Lajos Kossuth University, P.O. Box 12, H-4010 Debrecen, Hungary

~Received 17 December 1997!

We use the negative replica method, which was originally developed for the study of overfrustation in
disordered systems, to investigate the statistical behavior of the cost function of minimax games. These games
are treated as hierarchical statistical mechanical systems, in which one of the components is at negative
temperature.@S1063-651X~98!09706-2#

PACS number~s!: 64.60.Cn, 61.43.Fs, 05.20.2y, 05.50.1q
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I. INTRODUCTION

The theory of spin glasses has found interesting appl
tions in several branches of science@1#. In the theory of
combinatorial optimization it inspired the invention of th
so-called simulated annealing heuristic search technique@2#.
With the help of the replica method, several authors@3–5#
managed to obtain analytical insight into optimal solutions
some hard optimization problems. The interest in these s
ies was driven by the fact that many of these problems w
members of theNP complexity class, which means that
check their solutions requires only polynomial time, but
find them is presumably much harder.

NP is among the first few members of a hierarchy
complexity classes of increasing difficulty, the polynomia
time hierarchyPH of Meyer and Stockmeyer@6#. Examples
of problems from this hierarchy are adversary games, wh
the first player tries to minimize the objective function wh
the second one tries to maximize it. In this paper we treat
case in which one of the players has control over the spin
a spin glass, while the other controls the external magn
field, and the objective function is the energy of the sp
configuration.

The standard machinery of statistical mechanics provi
information on the ground state~minimum of energy!, as the
temperature approaches zero. To study the maximum,
need to approach zero from negative direction. Fortunat
this step can be incorporated into the replica method by
lowing the number of replicas to be negative. The method
negative replicas was invented by Dotsenko, Franz,
Mezard to study partial annealing and overfrustation in d
ordered systems@7#. ~Some related works are@8–11#.! We
use this framework for the investigation of minimax gam

In Sec. II we give a short, nontechnical description of t
polynomial-time hierarchy of complexity classes. In Sec.
we apply this extension of the replica method for thr
simple models. Section IV contains an extension of the ne
tive replica method for multimove games.

II. THE POLYNOMIAL-TIME HIERARCHY

In this section we closely follow the exposition of Stoc
meyer@6#. To formulate a rough definition of the complexit
classes it is easier to use decision problems than optimiza
ones. We define the complexity classP as those problems
which are solvable by a deterministic~and sequential! com-
571063-651X/98/57~6!/6487~6!/$15.00
a-

f
d-
re

f

re

e
of
ic

s

e
y,
l-
f
d
-

.

I

a-

on

puter in time bounded by some polynomial of the size of
problem. Of course, one should spell out in a little mo
detail the kind of computers used~usually a Turing or Ran-
dom Access Machine!, however, the classP is remarkably
stable with respect to changes of the computational mod

The definition of the classNP is similar, but in this case
the use of nondeterministic computers is allowed. The n
deterministic model of computation is more powerful th
the deterministic one. Let us take, for example, the m
representative problem ofNP, the satisfiability of an arbi-
trary Boolean expression. If there is an assignment of tr
values to the variables of the expression such that the exp
sion evaluates to ‘‘true,’’ then a nondeterministic compu
is able to verify that in polynomial time. In the first few step
it correctly guesses that assignment, and then by a deter
istic algorithm it verifies that the assignment indeed satis
the Boolean expression. These steps take only polynom
time. So NP contains those problems, whose solutions,
they exist, can be checked in polynomial time. A basic co
jecture of computer science is that the inclusionP,NP is
proper, i.e., there are problems easy to check but har
solve.

In the case of spin glasses the decision problem is t
given a Ji j coupling constants matrix and a numberK, is
there any spin configurationsi such that EJ(si)
5( i , j Ji j sisj<K? @To keep the size of the problem und
control,Ji j should take only discrete~maybe61) values.# A
closely related problem class is co-NP, the complement of
NP. Here the task is to recognize those problems which h
no solution. For example, in the spin-glass case one need
prove that there is no spin configuration with energy le
than a given constant. It is unlikely that such proof of po
nomial length exists for a randomJi j matrix , so it is be-
lieved thatNPÞco-NP. Optimization problems require th
ability to solve bothNP and co-NP problems. To prove tha
U0 is the minima ofEJ(s), one should first finds such that
U05EJ(s), then solve a co-NP problem proving that there is
no suchs that EJ(s),U0.

Several ways exist to obtain problems harder thanNP.
The most obvious is to allow more~say exponential! time for
the computation. A more subtle way to increase the powe
the computational model is the use of oracle machines. T
have an additional instruction ‘‘Call-Oracle.’’ When the m
chine executes this instruction, it presents the oracle a p
lem from the oracle’s problem class for which the orac
6487 © 1998 The American Physical Society
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6488 57PETER VARGA
returns the solution or gives a ‘‘no’’ answer in a single ste
The power of an oracle computer depends on the orac
problem classC. Since the oracle recognizes nonmemb
ship in C, too, the oraclesC and co-C have the same com
putational power. In this manner,NP(C) @P(C)# is defined
as the decision problem class, whose satisfiability can
decided by a nondeterministic~deterministic! computer with
oracleC in polynomial time.

By denotingP5(0
P , the polynomial-time hierarchy is de

fined as

(
k

P

5NPS (
k21

P D , Dk
P5PS (

k21

P D , )
k

P

5co2(
k

P

.

~1!

Members of this hierarchy occur in problems involving t
alternation of existential and universal quantifiers. The sa
fiability of the Boolean formula f (x) ~i.e., f PNP)
means 'xf (x), while its nonsatisfiability ~i.e.,
f Pco2NP) is the same as ;x¬ f (x).
Boolean formulas 'x1;x2•••'x2l 11f (x1 ,x2 , . . . ) or
'x1;x2•••;x2l¬ f (x1 ,x2 , . . . ) with (k21)-fold alternation
of existential and universal quantifiers provides natural
amples for problems from(k

P . The determination of the sat
isfiability of such formulas can be described as a game
tween two adversary players. The first player’s objective is
satisfy the formula, while the second one tries to set
variablesx2, x4,.., so that the formula is not satisfied.

An optimization problem from the polynomial-time hie
archy is the determination of the outcome

M5max
x1

min
x2

•••c~x1 ,x2 , . . . ! ~2!

of a minimax game. For many functionsc(x1 ,x2 , . . . ), the
computation ofM is a Dk11

P type problem if there arek
21 alternations of the min and max operators. In the n
section we treat the case wherex1 and x2 represent sets o
discrete spin variables andc(x1 ,x2) is the energy function of
spin configurations.

III. SPIN GAMES

In this section we study two-move minimax games. T
objective function is denoted byH(u,v), whereu andv are
two sets of variables. The first player~the minimizer! con-
trols theu variables, while the second one~the maximizer!
controls thev variables. If both players play optimally, the
the outcome of the game is

M5 inf
u

@sup
v

H~u,v !#. ~3!

To apply the methods of statistical mechanics, infuh(u)
@supvH(u,v)# is replaced by the free energy of a syste
with Hamiltonianh (H) at low positive~negative! tempera-
ture. For that purpose we introduce
.
’s
-

e

s-

-

e-
o
e

t

e

M ~bu ,bv!52
1

bu
ln(

$u%
exp2buS 1

bv
ln(

$v%
expbvH~u,v ! D

52
1

bu
ln(

$u%
S (

$v%
expbvH~u,v ! D 2bu /bv

52
1

bu

3 lim
n→0

1

nF S (
$ua,va%

expbv (
$a,a%

H~ua,va!D 21G .

~4!

There aren replicas ofu andnk52nbu /bv copies ofv. If
bu ,bv→`, then M (bu ,bv)→M ~at least if the zero tem-
perature entropy vanishes, which is true even in the m
field theory of spin glasses!.

To gain some experience with the method of negat
replicas, we apply it first for the nonrandom Hamiltonian

H~u,v !5
2

NS (
i

ui D S (
i

v i D
1g(

i
ui1h(

i
v i , i 51,...,N. ~5!

We are interested in the limit of m(g,h)
5 limN→`infusupvH(u,v)/N ~see Fig. 1!. Since the Hamil-
tonian~5! is very simple, finding the optimal moves does n
require too many computational resources. The player c
trolling the u variables only needs to find the minimum o
Eq. ~8!, which can be done in constant time independently
N. Consequently this example~just as the next one! belongs
to the complexity classP.

In this case the application of then→0 limit is not nec-
essary, so theu spins are not replicated. The partition fun
tion is

FIG. 1. Expected outcome of the game corresponding to
Hamiltonian~5! at optimal play.
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Z5 (
u,va

expbv(
a

H~u,va!

5E Nbvdxdy

4ip

3expH 2NS bv

2
xy2 ln$2cosh@bvk~g1x/k!#%

2kln$2cosh@bv~h1y!#% D J . ~6!

The largeb saddle-point equations are

y0

2
5tanhF2buS g1

x0

k D G'sgnS 2g1
x0

k D ,
~7!

x0

2k
5tanh@bv~h1y0!#'sgn~h1y0!.

Using ln(2coshbz)'buzu for b@1, one can check that

lim
bu ,bv→`

21

Nbu
lnZ

5 min
uP[ 21,1]

@2usgn~2u1h!1gu1hsgn~2u1h!#, ~8!

where the last expression is the outcome of the game if b
players play optimally, since at optimal playv5sgn(2u
1h).

In the next example a random magnetic field has b
added to the model:

H~u,v !5
2

NS (
i

ui D S (
i

v i D 1(
i

~g1gi !ui

1(
i

~h1hi !v i , ~9!

where hī5gī50 and hi
25gi

251. After some tedious bu
standard calculations, we obtain thatM (bu ,bv) is equal to
the saddle-point value of

2
1

bu
S bu

2
pq1E dz

A2p
e2 ~1/2! z2

3 ln$2cosh@2bu~AJp1g1z!#%, ~10!

2
bu

bv
E dw

A2p
e2 ~1/2! w2

ln$2cosh@bv~AJq1h1w!#% D ,

with respect top andq. The saddle-point equations are

p052AJE dw

A2p
e2 ~1/2! w2

tanh@bv~AJq01h1w!#,

~11!
th

n

q052AJE dz

A2p
e2 ~1/2! z2

tanh@2bu~AJp01g1z!#.

~12!

The numerical solution of these equations is presented
Fig. 2.

Since the Hamiltonian~9! is fairly simple, the expression
~10! can be derived without the use of replicas, too. For t
purpose, we assume thatM (bu ,bv) receives its dominan
contribution from spin configurations where theu spins’ av-
erage magnetization isū. Then

M ~bu ,bv!5
21

buNE )
i

dgi

A2p
e2~1/2( i gi

2
!

3 lnH E dl(
$ui %

e2 il~( i ui2Nū!

3expS 2buF(
i

~g1gi !ui1N fv~ ū!G D J
wheref v(ū) is the free energy of thev i spins in the externa
field of theui spin variables:

f v~ ū!5
1

bv
E dw

A2p
e2 ~1/2! w2

ln$2cosh@bv~2Jū1h1w!#%.

~13!

M (bu ,bv) evaluates to

21

bu
F ilū1E dz

A2p
e2 ~1/2! z2

ln$2cosh@2bu~g1z!1 il#%

2
bu

bv
E dw

A2p
e2 ~1/2! w2

ln$2cosh@bv~2Jū1h1w!#%G .

~14!

FIG. 2. . Expected outcome of the game corresponding to
Hamiltonian~9! at optimal play.
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This formula should be computed at its saddle-point va
with respect to l and its minimum with respect to
ūP@21,1#. After the change of variablesū5q/(2AJ) and
il5buAJp, expressions~10! and ~14! coincide. Since we
managed to evaluateM (bu ,bv) without the use of replicas
too, this example is certainly not the most impressive ap
cation of the negative replica method. Nevertheless,
model provides an example where one can analytically pr
that the replica method works.

Finally, we attempt to treat the case of a spin-glass t
objective function

HJ~si ,hi !5 (
1< i< j <N

Ji j sisj
d
f
a

n

e

i-
is
e

e

1g (
1< i<N

hisi , hi561, si561 ~15!

whereJi j is a random variable with Gaussian distribution

dm~Ji j !5AN/2Jexp~2J2/2N!dJi j . ~16!

This problem seems to belong to the complexity classD2
P ,

since the maximizer needs to solve the problem of the m
mization of the spin-glass energy function~15!, and this
problem isNPùCO-NP.

The minimizer makes the first move and controls thehi
variables, while the maximizer makes the second move
controls thesi spins. The partition function of this system
Zn,k5E )
i ,k

dm~Jik! (
$hi

a ,si
aa%

expbv(
aa

HJ~hi
a ,si

aa!

5E )
aa,bb

SANb

2p
dQaabbD exp2NH 2nk

bv
2

4
1

bv
2

2 (
aa,bb

Qaabb
2

2 ln (
$Saa,Ha%

expbvFbv (
aa,bb

QaabbSaaSbb2g(
a

Ha(
a

SaaG J ,

wherek52bu /bv . In the one stage replica symmetry breaking approximation

Qaaab5p, while Qaabb5q for aÞb, ~17!

Zn,k5E )
aa,bb

SANb

2p
dQaabbD exp2NH bv

2S 2
nk

4
1

n~n21!k2

4
q21

nk~k21!

4
p21

nk

2
pD2 lnE dx

A2p
e2 ~1/2! x2

3S E dy

A2p
e2 ~1/2! y2

„$2cosh@bv~Aqx1Ap2qy1g!#%k1$2cosh@bv~Aqx1Ap2qy2g!#%k
…D nJ .

From this equation one obtains the expected outcome of the game:

m5
1

N
min
$hi %

@max
$si %

HJ~si ,hi !#5 lim
n→0,bv→`

1

kbvnN
~Zn,k21!

5
bv

4
@11kq21~12k!p222p#1

1

kbv
E dx

A2p
e2 ~1/2! x2

3 lnE dy

A2p
e2 ~1/2! y2

„$2cosh@bv~Aqx1Ap2qy1g!#%k1$2cosh@bv~Aqx1Ap2qy2g!#%k
…,
he
where the last expression should be evaluated at its sa
point. This expression is very similar to the free energy o
spin glass at the one stage replica symmetry breaking
proximation @12#. Indeed,Qaabb might be regarded as a
nk3nk matrix broken into blocks of sizek3k. However,
herek is a fixed negative number.m(p,q) has a minimum at
p5q51 on the linep5q. In this approximation
dle
a
p-

mminimax~g!5E dx

A2p
e2 ~1/2! x2

min~ ux1gu,ux2gu!.

~18!

A better approximation is achieved if we search for t
saddle point on the (p,q) plane. Since the first term ofm
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scales asO(b) asb→`, while the second has finite limits
the saddle point should be on the curve 0511kq21(1
2k)p222p. We evaluated numericallym as the function of
g. We plot the functionmminimax(g) ~solid line on the figure!.
The exact value ofmminimax(g) is smaller thanmspin glass(g)
@where mspin glass(g) is the maximal value of(Ji j sisj
1g(si ], since the minimizer tries to sethi into directions
least favorable for the maximizer, while the constant m
netic field is equivalent to a randomly chosenhi configura-
tion. However, mminimax(g)>mspin glass(0), since one of
6(hisi is always nonnegative. mminimax(g)>@g
2mspin glass(0)# also holds, since if the spins are set to t
same direction ashi , then the contribution of(Ji j sisj can-
not be less than2mspin glass(0) by the symmetry of the cou
plings Ji j . We also expect thatmminimax(g) converges tog
2mspin glass(0) asg→`. These considerations provide upp
and lower bounds formminimax(g) ~dotted lines in Fig. 3!.
Unfortunately, the lower bound is violated for smallg, while
its asymptotic value is correctly reproduced.

It would be interesting to know if a better, replica sym
metry breaking solution would cure this problem. In fact,
is quite possible that even a higher order approximat
would not help. The problem is that even at the one st
replica symmetry breaking approximation there is an alter
tive to Eq.~17!:

Qaaba5p, while Qaabb5q for aÞb. ~19!

FIG. 3. Expected outcome of the game corresponding to
spin-glass type Hamiltonian~15! at optimal play. The dotted lines
are exact upper and lower bounds, while the solid line is the re
obtained in the one stage replica symmetry breaking approxima
for the expected outcome.
-

n
e
-

However, the termg(aHa(aSaa is not compatible with the
hierarchical structure ofQaabb in Eq. ~19!, which makes the
analytic evaluation ofZn,k very difficult in this case. In prin-
ciple, the best would be to use the ansatz

Qaabb5q0 for aÞb,aÞb, Qaaab5q0 for aÞb,

Qaaba5q0 for aÞb. ~20!

The nonultrametric structure of Eq.~29! would make this
ansatz very interesting, but it seems hopeless to eval
Zn,k .

IV. MULTIMOVE GAMES

Up to this point only two-move games were treated. T
extension for multimove games is straightforward. For e
ample, the outcome of the four-move game

M5 inf
u
„sup

v
$ inf

w
@sup

z
H~u,v,w,z#%… ~21!

is

lim
bu,v,w,z→`

21

bu
lim
n→0

F S (
$ua,vaa,wa,ab,zaabg%

3expbz (
aabg

H~ua,vaa,waab,zaabg!D 21G , ~22!

where the ranges of the indices areuau5n, uau52bu /bv ,
ubu52bv /bwugu52bw /bz .

The limit bu,v,w,z→` corresponds to the optimal strate
gies of the players. Finiteb simulates nonexact optimization
i.e., players with bounded computational capabilities. An
teresting case is when one player’s temperature is infinite
the other ones play against random moves. Such game
called ‘‘games against Nature’’@13#.

V. DISCUSSION

In the previous sections we used the method of nega
replicas to examine optimization problems arising in mi
max games. Such games provide examples of very diffi
combinatorial problems. In principle our method is able
estimate the expected outcome of some adversary ga
Unfortunately, due to the complexity of the calculatio
emerging in problems of spin-glass type, we manage to t
only fairly simple optimization problems. Nevertheless, t
method of negative replicas provides a natural framework
treat game theoretical problems with the machinery of sta
tical mechanics.
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