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Minimax games, spin glasses, and the polynomial-time hierarchy of complexity classes
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We use the negative replica method, which was originally developed for the study of overfrustation in
disordered systems, to investigate the statistical behavior of the cost function of minimax games. These games
are treated as hierarchical statistical mechanical systems, in which one of the components is at negative
temperature[S1063-651X98)09706-3

PACS numbeps): 64.60.Cn, 61.43.Fs, 05.20y, 05.50:+q

I. INTRODUCTION puter in time bounded by some polynomial of the size of the
problem. Of course, one should spell out in a little more
The theory of spin glasses has found interesting applicadetail the kind of computers usddsually a Turing or Ran-
tions in several branches of scienfH. In the theory of dom Access Maching however, the clas® is remarkably
combinatorial optimization it inspired the invention of the stable with respect to changes of the computational model.
so-called simulated annealing heuristic search techriglie The definition of the clasblP is similar, but in this case
With the help of the replica method, several authi®s5]  the use of nondeterministic computers is allowed. The non-
managed to obtain analytical insight into optimal solutions ofyeterministic model of computation is more powerful than
some hard_ optimization problems. The interest in these studpe geterministic one. Let us take, for example, the most
les was driven by the fact that many of these problems werg,, osentative problem d¥P, the satisfiability of an arbi-
members of the\P complexity class, which means that 0 v, Boolean expression. If there is an assignment of truth

check their solutions requires only polynomial time, but tovalues to the variables of the expression such that the expres-

find them is presumably much harder. ; “ " L
. ) . sion evaluates to “true,” then a nondeterministic computer
NP is among the first few members of a hierarchy of:

complexity classes of increasing difficulty, the polynomial- IS able to verify that in polyn9m|al time. In the first few steps'
time hierarchyPH of Meyer and Stockmeyd]. Examples it correctly guesses that assignment, and then by a determin-

of problems from this hierarchy are adversary games, Wher-@tic algorithm it verifi_es that the assignment indeed satisfie_s
the first player tries to minimize the objective function while the Boolean expression. These steps take only polynomial
the second one tries to maximize it. In this paper we treat théme. SONP contains those problems, whose solutions, if
case in which one of the players has control over the spins dhey exist, can be checked in polynomial time. A basic con-
a spin glass, while the other controls the external magnetitecture of computer science is that the inclusBaNP is
field, and the objective function is the energy of the spinproper, i.e., there are problems easy to check but hard to
configuration. solve.

The standard machinery of statistical mechanics provides In the case of spin glasses the decision problem is that,
information on the ground stafeninimum of energy, as the  given aJ;; coupling constants matrix and a numbder is
temperature approaches zero. To study the maximum, wiaere any spin configurations; such that E,(s;)
need to approach zero from negative direction. Fortunatelys=2; jJi;SiSj<K? [To keep the size of the problem under
this step can be incorporated into the replica method by aleontrol,J;; should take only discretgnaybe= 1) values] A
lowing the number of replicas to be negative. The method otlosely related problem class is &bP, the complement of
negative replicas was invented by Dotsenko, Franz, andlP. Here the task is to recognize those problems which have
Mezard to study partial annealing and overfrustation in dis-o solution. For example, in the spin-glass case one needs to
ordered systemp7]. (Some related works af8—11].) We  prove that there is no spin configuration with energy less
use this framework for the investigation of minimax games.than a given constant. It is unlikely that such proof of poly-

In Sec. Il we give a short, nontechnical description of thenomial length exists for a randow); matrix , so it is be-
polynomial-time hierarchy of complexity classes. In Sec. Illlieved thatN P+ co-NP. Optimization problems require the
we apply this extension of the replica method for threeability to solve bothiNP and coNP problems. To prove that
simple models. Section IV contains an extension of the negad, is the minima ofE;(s), one should first find such that

tive replica method for multimove games. Uo=E;(s), then solve a ctN P problem proving that there is
no suchs that E;(s)<U,.
Il. THE POLYNOMIAL-TIME HIERARCHY Several ways exist to obtain problems harder than.

The most obvious is to allow moksay exponentialtime for
In this section we closely follow the exposition of Stock- the computation. A more subtle way to increase the power of
meyer[6]. To formulate a rough definition of the complexity the computational model is the use of oracle machines. They
classes it is easier to use decision problems than optimizatidmave an additional instruction “Call-Oracle.” When the ma-
ones. We define the complexity claBsas those problems chine executes this instruction, it presents the oracle a prob-
which are solvable by a deterministiand sequentigicom-  lem from the oracle’s problem class for which the oracle
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returns the solution or gives a “no” answer in a single step.

The power of an oracle computer depends on the oracle’s 2
problem classC. Since the oracle recognizes nonmember-
ship in C, too, the oracle€ and co€ have the same com-
putational power. In this mannex P(C) [P(C)] is defined

as the decision problem class, whose satisfiability can be

—e— g=-3.0
decided by a nondeterminist{ideterministi¢ computer with Z 0 —- §= 15
oracleC in polynomial time. 1 4 g=00
. P . . . . —a— g=1.5
By denotingP=Z , the polynomial-time hierarchy is de- —%— g=3.0
fined as "
P P P P P 2
> =NP| X ) AE=P(Z ) Il =co->
k k-1 k-1 k k

3
1) 3 2 - 0 1 2

Members of this hierarchy occur in problems involving the |G 1. Expected outcome of the game corresponding to the
alternation of existential and universal quantifiers. The satispamiltonian(5) at optimal play.

fiability of the Boolean formulaf(x) (i.e., feNP)

means 3xf(x), while its nonsatisfiability (i.e., 1 1

feco—NP) is the same as Vx—f(x). M(BU,BU)=——InZ exp—ﬁu(—IHE expGUH(u,v))
Boolean formulas Ix;VXy-+-Ixy1f(Xy,%p,...) oOF u (o By 1o

AX VX5 - - VX = F(X1,%5, . .. ) with (k—1)-fold alternation

of existential and universal quantifiers provides natural ex- __ imE (2 expB,H(u,v)
amples for problems fror, . The determination of the sat- u o\ oo
isfiability of such formulas can be described as a game be-

) _:Bu /BU

tween two adversary players. The first player’s objective is to — i
satisfy the formula, while the second one tries to set the Bu
variablesxs,, X,4,.., SO that the formula is not satisfied. 1
An optimization problem from the polynomial-time hier- % lim _{( > expg, > H(ua,va)> —1l
archy is the determination of the outcome n—o" | ua v {a,a}
4
M =maxmin---c(Xq,Xp, ...) 2
X1 X2

There aren replicas ofu andnk=—ng,/B, copies ofv. If

of a minimax game. For many functiom$x; ,X,, ...), the Bu, By, thenM(p, B,) =M (at least if the zero tem-

: ) ; erature entropy vanishes, which is true even in the mean
computation ofM is a AL, ; type problem if there aré 1Ei)eld theory of ggin glasses
—1 alternations of the min and max operators. In the next 14 gain some experience with the method of negative

section we treat the case wherg andx, represent sets of eplicas, we apply it first for the nonrandom Hamiltonian
discrete spin variables amgx, ,X,) is the energy function of

spin configurations.

H(u,v)=§(2i uj E. vi>

Ill. SPIN GAMES

In this section we study two-move minimax games. The .
objective function is denoted Wi (u,v), whereu andv are +gZ uﬁhZ vir 1=1N. ®
two sets of variables. The first playéhe minimizej con-
trols theu variables, while the second orfthe maximizey
controls thev variables. If both players play optimally, then ~ We are interested in the limit of m(g,h)
the outcome of the game is =limy_inf,supH(u,v)/N (see Fig. 1 Since the Hamil-
tonian(5) is very simple, finding the optimal moves does not
. require too many computational resources. The player con-
M :'T[SUFH(U’U)]' 3 trolling the u variables only needs to find the minimum of
’ Eq. (8), which can be done in constant time independently of
N. Consequently this examplgust as the next onebelongs
To apply the methods of statistical mechanics,hft) to the complexity clas®.
[supH(u,v)] is replaced by the free energy of a system In this case the application of the—0 limit is not nec-
with Hamiltonianh (H) at low positive(negative tempera-  essary, so the spins are not replicated. The partition func-
ture. For that purpose we introduce tion is
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Z=2 expB, > H(u,v®

4iT

o

—kln{zcosrm(hw)]}) ] (6)

_f NB,dxdy

—N %xy— In{2cosh B, k(g+x/k)]}

The largeB saddle-point equations are

Yo _ Xo
?—tanr{ Bul 9+ K

Xo
”59’( S
@

oS =tanti 8, (h+yo)]~sgr(h+yo).

Using In(2cosiBz)~g|7 for 5> 1, one can check that

lim InZ

By By—® NBU

= min [2usgn(2u+h)+gu+hsgr2u+h)], (8)
ue[—-1,1]
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FIG. 2. . Expected outcome of the game corresponding to the

Hamiltonian(9) at optimal play.

dz
qo=2wf 5= PP tani - B,(\Ipo+ g+ 2)]
(12

The numerical solution of these equations is presented in
Fig. 2.
Since the Hamiltonian9) is fairly simple, the expression
(10) can be derived without the use of replicas, too. For that
urpose, we assume th&t(8,.8,) receives its dominant

where the last expression is the outcome of the game if botgontribution from spin configurations where thespins’ av-

players play optimally, since at optimal play=sgn(au
+h).

erage magnetization is. Then

In the next example a random magnetic field has been

added to the model:

H(u,v)=%(z u;

(zm

+Ei (g+gj)u;
+2 (h+h)v;, (9)

where h;=g;=0 and h?=g?=
standard calculations, we obtain thd{( g, ,3,) is equal to
the saddle-point value of

x In{2coshi— B,(\Ip+g+2)1}, (10

'8” jﬂe (12 w12 coshi B, ( \/_q+h+w)]})

with respect top andg. The saddle-point equations are

——e” W2W%anH g, (JIge+h+w)],
(11)

Po= 2\/—f

1. After some tedious but

4% w2sed
M(BuB)= B fHsz

> e INZiU—Nw
{ui}

XIn

xexr{—ﬂu[E (g+g)u;+Nf,(u)

J

wherefv(U) is the free energy of the; spins in the external
field of theu; spin variables:

e (12 W62 coshi B, (2Ju+h+w)]}.
13

M(B.,B,) evaluates to

_t
By

iAu+ f Ee* (12 Z|n{2coslfi— B,(g+2) +iN]}
V2m :

,Bu dw
Nor

—— e~ 2% n2costi B, (2Ju+h+w)]}|.

(14
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This formula should be computed at its saddle-point value

with respect toX and its minimum with respect to +912 hisi, hi=*1, s=*1 (19
UE[ 1,1]. After the change of variables= a/(2+J) and

iA=B,\/Jp, expressiong10) and (14) coincide. Since we whereJ;; is a random variable with Gaussian distribution
managed to evaluaté (8, ,8,) without the use of replicas,

too, this example is certainly not the most impressive appli- du(Jjj) = \/N/2Jexp(—J2/2N)dJij . (16
cation of the negative replica method. Nevertheless, this

model provides an example where one can analytically prov@his problem seems to belong to the complexity class

that the replica method works. since the maximizer needs to solve the problem of the maxi-
Finally, we attempt to treat the case of a spin-glass typenization of the spin-glass energy functigh5), and this
objective function problem isNPNCO-NP.
The minimizer makes the first move and controls the
H(s h z J.ss variables, while the maximizer makes the second move and
J(S| ’ |) |]S|SJ . . . . .
1<i<j<N controls thes; spins. The partition function of this system is

Znk= f H du(Ji) > exneug H,(h?,s?)

{ha Saa}
B NG B % ,
—In E exngv Bv E Qaabﬁsaasbﬁ_gE Haz Saa‘“ )
(S Hay aa<bp a a

wherek=—,/B8, . In the one stage replica symmetry breaking approximation

Qaaaﬁ: P, while Qaabﬁ:q for a#b, (17)

B INB o[ nk n(n-1)k? _ nkk-1) , nk dX 12
Z”"‘_faaﬂbﬁ< Eanabﬂ)eX“N{ﬁv(_T+ g Ot Pt gp|Tinf —=e

d ) A
X(fée‘m” ({2costi B, (Vax+ Vp—ay+g) 1}*+{2cosli B, (Vax+ vp—qy—g)]}")) ]

From this equation one obtains the expected outcome of the game:

1 1
m=—minfmaxH(s; ,h;))]= Iim ——(Z 1)
Ning (53 neog,e KBTS
1 dx 2
1+ko?+(1-k)p>—2p]+ — - (12x
[ o*+(1-k)p*~2p] kB.) 2m®

d )
XIn f %e (12 y°({2costi B, (Vax+ Vp—qy+g)1}*+{2cosh B, (\Vax+ Vp—ay—g)1}9),

ko

where the last expression should be evaluated at its saddle

point. This expression is very similar to the free energy of &  mMpinimad(9) = f —e (12X min(|x+ al,|x—gal).

spin glass at the one stage replica symmetry breaking ap- V27

proximation [12]. Indeed, Q.5 Might be regarded as an (18
nkxnk matrix broken into blocks of siz&Xxk. However,

herek is a fixed negative numbem(p,q) has a minimum at A better approximation is achieved if we search for the

p=q=1 on the linep=gq. In this approximation saddle point on thep,q) plane. Since the first term oh
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470 ) However, the terng> H2X ,S** is not compatible with the

] ! hierarchical structure d@,,pz in EQ. (19), which makes the
analytic evaluation oZ,, , very difficult in this case. In prin-
ciple, the best would be to use the ansatz

Qaab/BIQO for a¢b1a¢31 QaaaB:qO for Cl’#ﬁ,
Qawbe=0o for a#b. (20

The nonultrametric structure of Eq29) would make this
ansatz very interesting, but it seems hopeless to evaluate
Znk-

IV. MULTIMOVE GAMES

Up to this point only two-move games were treated. The
extension for multimove games is straightforward. For ex-

4 2 0 2 4
o ample, the outcome of the four-move game
FIG. 3. Expected outcome of the game corresponding to the M =inf(suglinf[supH (u,v,w,z]}) (21
u v w z

spin-glass type Hamiltonia(l5) at optimal play. The dotted lines

are exact upper and lower bounds, while the solid line is the result

obtained in the one stage replica symmetry breaking approximation

for the expected outcome. 1
lim ——Ilim

scales a®(3) asB— x>, while the second has finite limits, g, ,—= Bu n—»O[ ( {ud pae, W @B ZaaByy

the saddle point should be on the curves D+kg?+ (1

—k)p%—2p. We evgluated numericalllyl as the funcFion of X expg, 2 H(ua,vaa’waaﬁ,zaaﬁﬂ) — 1} (22)

g. We plot the functiom,inimax{9) (solid line on the figure daBy

The exact value ofMyinima)(9) is smaller thamg,i, 4as(9)

[where mgpin giasfd) is the maximal value of2J;s;s;  where the ranges of the indices deg=n, |a|=—8,/8,,

+0Zs;], since the minimizer tries to sét, into directions |B|=—8,/8ulv|=—Bw!B;.

least favorable for the maximizer, while the constant mag- The limit 3, , ,,,—% corresponds to the optimal strate-

netic field is equivalent to a randomly chosenconfigura-  gies of the players. Finit8 simulates nonexact optimization,

tion. However, Mpinimad{ 9) = Mgpin giask0), since one of i.e., players with bounded computational capabilities. An in-

+>h;s; is always nonnegative. Myinimax{9)=[9d teresting case is when one player’'s temperature is infinite, so

—Mgpin giask0)] also holds, since if the spins are set to thethe other ones play against random moves. Such games are

same direction akb;, then the contribution ok J;;s;s; can-  called “games against Nature[13].

not be less thar- Mgy g1as0) by the symmetry of the cou-

plings J;; . We also expect thah,nima{g) converges ta@ V. DISCUSSION

—Mgpin glask0) asg— . These considerations provide upper _ _ _
and lower bounds fominimadg) (dotted lines in Fig. B In the previous sections we used the method of negative
Unfortunately, the lower bound is violated for smgllwhile ~ replicas to examine optimization problems arising in mini-
its asymptotic value is correctly reproduced. max games. Such games provide examples of very difficult

It would be interesting to know if a better, replica sym- combinatorial problems. In principle our method is able to
metry breaking solution would cure this problem. In fact, it estimate the expected outcome of some adversary games.
is quite possible that even a higher order approximationJnfortunately, due to the complexity of the calculations
would not help. The problem is that even at the one stag€merging in problems of spin-glass type, we manage to treat
replica symmetry breaking approximation there is an alternaonly fairly simple optimization problems. Nevertheless, the
tive to Eq.(17): method of negative replicas provides a natural framework to

treat game theoretical problems with the machinery of statis-
Qaabe=Pp, While Quupp=q for a#p. (19) tical mechanics.
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